
JOURNAL OF COMPUTATIONAL PHYSICS 64, 133-160 (1986)

Program for Efficient Monte Carlo Computations
of Quenched W(3) Lattice Gauge Theory

Using the Quasi- heatbath Method
on a CDC CYBER 205 Computer

A. D. KENNEDY

Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106

J. KUTI

Department of Physics B-019, University of California San Diego,
La Jolla, California 92093

S. MEYER

Fachbereich Physik, Abt. Theor. Physik, Universitrit Kaiserslautern,
Postfach 3049, D-67SO Kaiserslautern, Germany

AND

B. J. F%NDLETON

Department of Physics, University of California,
Santa Barbara, California 93106

Received January 29, 1985; revised April 23, 1985

We describe the program SZINHUR which performs a Monte Carlo measurement of
properties of lattice Quantum Chromodynamics. It uses the Quasi-Heatbath updating
algorithm, which is known to reduce the correlations between successive sweeps through the
spacetime lattice giving a performance improvement by a factor of roughly two over the ten-
hit Metropolis procedure. The program measures the Polyakov loop and its correlation
function. The program is highly vectorized and runs on a one-pipe CDC CYBER 205 at a
speed of 53 psecjlink, which corresponds to an average computation rate of 93 Mflops. The
program would run at almost twice this speed on a two-pipe machine. 0 1986 Academic PISS,

Inc.

INTRODUCTION

Lattice QCD

This paper describes a program which carries out a Monte Carlo evaluation of
various properties of Lattice Quantum Chromodynamics (QCD) [l]. In its con-

133
0021-9991186 $3.00

Copyright 0 1986 by Academic Prss, Inc.
All rights ol reproduction in any form rescrwd.

134 KENNEDY ET AL.

tinuum formulation QCD is thought to describe the physics of the strong interac-
tions, and so an understanding of QCD is central to our understanding of both
elementary particle and nuclear physics. Unfortunately, the coupling constant for
continuum QCD is near to one at length scales of physical interest, and thus QCD
is not readily amenable to the perturbative approximation methods which have
proved so successful for Quantum Electrodynamics and the unified electroweak
theories.

We are forced, therefore, to use numerical methods to learn about the nature of
QCD and to make experimentally verifiable predictions. To do this, we
approximate the spacetime continuum by a discrete lattice, which for simplicity we
choose to have hypercubic symmetry. Furthermore, to have a system with a finite
number of degrees of freedom we must restrict ourselves to a lattice of finite extent.
One advantage of this approach, over and above that of facilitating numerical com-
putations, is that the discrete lattice spacing regulates the ultraviolet (short dis-
tance) divergences of the quantum field theory.

One of the most useful techniques we can use to analyze the results of numerical
lattice measurements is that of the renormalization group (RG) [2]. The idea is
that we are not studying a particular lattice theory per se, but that we are studying
a family of lattice approximations to the underlying continuum theory: the mem-
bers of this family differ in that they have different lattice spacings, that is, they are
coarser or finer meshes over the spacetime continuum. In order that these models
describe the same physics we must adjust the coupling constant on the lattice and
the lattice spacing simultaneously such that some physical quantity, say a
correlation length, stays fixed. However, we know from perturbation theory how
that coupling constant should vary with the lattice spacing as the lattice spacing
goes to zero, and therefore we can test whether our lattice results are obeying this
scaling relation to find out whether we are working on a lattice large and line
enough to give a good approximation to the continuum physics. To use the RG
information we have to work on a series of lattices of different sizes and coupling
constants until we can be sure that we are measuring the quantities of interest in the
scaling window: the region in which the lattice is large enough for finite size effects
to be under control and simultaneously for the coupling constant to be small
enough to be out of the strong-coupling regime.

It is a matter of great physical interest also to study the properties of QCD at
finite temperature [3], as this enables us to understand the thermodynamics and
phase structure relevant to heavy ion collisions and the evolution of the early
universe. The thermodynamics of hot QCD turns out to be equivalent to using an
asymmetric lattice, in which in one direction the lattice is much shorter than in the
other three (spatial) directions, and for which we impose periodic boundary con-
ditions in the temperature direction. Quite apart from its intrinsic physical interest
the bulk thermodynamic properties of QCD are easier to obtain reliably from
numerical lattice computations than the highly nonlocal quantities (such as the
mass spectrum) which are of physical interest at zero temperature. We can make
considerable use of the RG method in this case not only by adjusting the length of

EFFICIENT MONTE CARLO FOR su(3) 135

the lattice in the temperature direction, but also by observing carefully the effects of
varying the spatial size of the lattice: this approach is known as finite size scaling.

Polyakov Loops

Once we have set up a lattice which approximates QCD we want to measure the
behaviour of a probe which we put into the system; for instance, we would like to
put two quarks into the system and measure the way that their interactions vary
with their separation. This corresponds to measuring the expectation value of a
nonlocal operator such as the Wilson loop. A particularly elegant variation of this
approach is to measure the properties of Wilson loops which wrap around the lat-
tice by virtue of the periodic boundary conditions, we shall call such operators
Polyakov loops. Our program is set up to measure not only the expectation of a
single Polyakov loop, which serves as an order parameter to distinguish the phases
of finite temperature QCD, but also to measure the correlation function for two
Polyakov loops as a function of their separation. This correlation function is
directly related to the force between two quarks in QCD, and therefore enables us
to investigate the inter-quark potential numerically. In particular, we can measure
the asymptotic form of this potential (which is linear in the confining phase) and
measure the string tension, which is the energy per unit length of the gluonic string
which ties two quarks together inside a meson. This number, whose value is
currently subject to some controversy [4-S], is vital in relating quantities measured
on the lattice to the corresponding quantities measured in the real world.

One of the major limitations of these calculations from the physics viewpoint is
that we have not included the effect of dynamical fermions, that is we have only
included static quark loops as probes to measure the behaviour of the gluonic
vacuum, but we have not investigated how virtual quarks can modify this
behaviour. The introduction of dynamical quarks is a very difficult problem com-
putationally, and one which we intend to study with later versions of the program.

Mathematical Formulation

On the computer we want to represent the lattice as a set of SU(3) matrices
which live on the links of a four-dimensional hypercubic lattice with (n,, nY, n,, n,)
sites in the four directions. This means that a total of 72n,nynzn, real numbers are
required to represent any single lattice configuration (strictly speaking we require
only eight real parameters to describe an arbitrary SU(3) element, but the rules for
multiplying two group elements in terms of these eight numbers are prohibitively
slow for practical computations, so we have counted each matrix as though it were
an completely arbitrary 3 x 3 complex matrix with 18 real components instead). We
shall call these link variables U(x, y, z, t, p), where (x, y, z, t) specifies a lattice site
and p is one of the four link directions.

In terms of the link variables the Polyakov loop may be written as
n, - I

P(U;x, y,z)=Tr c U(x, y,z, t,p=O0),
t=0

136 KENNEDY ET AL.

where p = 0 is the temperature direction on the lattice. The trace takes into account
the periodic boundary conditions imposed on the lattice in the temperature direc-
tion. This formula specifies the value of a Polyakov loop on a given background U
configuration, but what we must calculate is the expectation value of P when
averaged over all possible U configurations with a measure defined by the action S,
that is

where fl is related to the lattice coupling constant (and the temperature), and 2 is
the normalization constant

Z = (&I) eegscu). s

For the action S we are free to choose any functional of the gauge field U which
has the correct continuum limit; we use the simplest such action which was
introduced by Wilson,

where the sum extends over all the elementary squares (plaquettes) 0 on the lat-
tice, and the product over the U matrices is taken around the perimeter (boundary)
80 of plaquette 0 (the operation of taking the real part obviates the need for
specifying or summing over the orientation of the plaquettes, so the sense in which
we take the products of links around the boundary of a plaquette is irrelevant).
This action has the important feature that it is local, meaning that if we change the
value of U on only one link, say l,, = (x,, y,, zO, to), then the change in the action
may be computed by just looking at the plaquettes neighbouring this link:

AS(U)=A 1
u E Plo (

l-fReTr n U(I)
/E al-1 1

with a*/, being the coboundary of fO, namely the set of all plaquettes which include
l,-, in their boundary. In four dimensions the sum is over exactly six plaquettes.
Many other choices of action are possible, for example, the heat-kernel action or
Symanzik’s improved action [9, lo]: this latter is chosen so as to eliminate the dif-
ference between the lattice action and the continuum action to one order higher in
perturbation theory at the cost of being less local (it involves next-to-nearest
neighbour plaquettes in AS). Although the use of such alternatives to the Wilson
action are more expensive in computation time and have not yet been shown to
yield results markedly closer to the continuum limit, they certainly warrant further
study.

EFFICIENT MONTE CARLO FOR %43) 137

Monte Carlo Method

Let us now consider how we perform the integral over U configurations in prac-
tice. Clearly we cannot perform a direct numerical integration, because there is an
eight-dimensional group-space integral for each link, and thus for even a modestly
small lo4 lattice the U integral is 320,000 dimensional. We use a Monte Carlo
(MC) technique [111 to evaluate the integral, and by the use of a variety of tricks
we can reduce the computation to a tractable amount. The MC method evaluates
the integral by selecting a sequence of U configurations at random and measuring
the integrand on each member of the sequence. It is easy to show that the average
value of an operator on a randomly chosen configuration is just the integral of the
operator over the space of all U configurations, and that the average of the values
measured on a sequence of T random configurations is again the desired integral
but with a variance which falls like V/T, where V is the variance of a single
measurement. Clearly we can obtain the desired answer with an arbitrarily small
variance by making T sufficiently large, that is, by averaging over a large enough
sample of statistically independent randomly chosen gauge field configurations.
However, while this is necessary to produce useful answers we are limited to
sampling at most of the order of a few thousand configurations given a reasonable
amount of computer time, so to reduce the statistical uncertainties in the answer it
is vital to make the variance V as small as possible.

There are a variety of techniques known for variance reduction, of which the one
most useful in the present case is importance sampling. For this we generate U con-
figurations not with respect to a uniform measure on the SU(3) group manifold
(Haar measure), but with respect to a measure which more closely resembles the
function we are trying to integrate. If we were able to generate configurations
according to the integrand itself (which a fortiori would have to be positive
semidefinite everywhere) we could in principle make V zero, At first sight
generating such an algorithm which would generate configurations with respect to
an essentially arbitrary measure seems very difficult, but in fact it can be done quite
easily. The trick is to use a Markov process which generates configurations which
asymptotically tend to the desired distribution. After iterating this Markov process
for a sufliciently long time (it converges exponentially in theory), we can assume
that all subsequent configurations are being generated with the desired distribution.

There are only two drawbacks to this scheme: First, the configurations which are
generated are correlated with each other. This means that the variance in the final
result does not fall like V/T but only as VT’/T, where T’ is the correlation time
which is the number of steps between effectively statistically independent con-
figurations. T’ can be calculated from the values measured on individual con-
figurations by dividing the data into blocks and performing some simple x2 tests on
the block averages. It is immediately seen that reducing the correlation time by a
factor of two, for example, is equivalent to doubling the number of configurations
generated or to having a program which executes twice as fast.

Second, the Markov chain generates configurations with the correct relative

138 KENNEDY ET AL.

probability, but it tells us nothing about the absolute normalization. What we must
do is to split the integrand into two factors f(V) . g(V), generate configurations via
a Markov process with distribution proportional to g(U), and then measure the
value off(U) on these configurations. The resulting values for (f . g) are then nor-
malized relative to (g). As is usual we choose g(U) to be the exponential of the
action andf(LI) to be the operator we want to measure, such as the Polyakov loop
P, but this decomposition leaves something to be desired. It is perfectly line when
we are measuring the energy, which is basically the mean plaquette or the expec-
tation value of the action itself

(S) =; j (dU) S(U)e-~s(u)

because the importance samphng is quite good (roughly speaking Se-OS is not too
different a function from e ~ Ds itself); however, when we want to measure a nonlocal
quantity such as the correlation function between two Polyakov loops, (P(x, y, z) .
P(x’, y’, z’)), then we find that the statistical errors start becoming uncomfortably
large. Unfortunately no better means of implementing importance sampling is
known at present.

Markov Processes

Let us consider in a little more detail the Markov process we use to generate the
probability distribution according to the function g(U). A Markov process is
defined by a transition probability P(U, V), which is the probability of generating
configuration u’ given that the previous configuration of the Markov chain was U.
The fact that each initial configuration U has to be transformed into some final
configuration by the action of P implies that P must satisfy the relation

1 P(U, CT)= 1.
U’

Suppose we apply a single step of the Markov process to a configuration U which
was selected with probability distribution Q(U), then we will end up with a con-
figuration u’ with distribution

Q'(u) =c Q(U) P(u, vl).
u

We define a probability distribution Q to be a fixed point of P if Q’ = Q. We need
to choose P in such a way that g is a fixed point. What is even more useful is the
fact that if P is strongly ergodic, which means that any initial configuration can be
taken to any final configuration with some nonvanishing probability by a single
Markov step (formally we write this condition as P(U, v’) > 0, VU, V), then not
only are we guaranteed that there is a unique fixed point, but also that iterating the
Markov process from any initial probability distribution (and hence any initial con-

EFFICIENT MONTE CARLO FOR su(3) 139

figuration) will cause the distribution of the configurations generated to tend to the
fixed point. As we mentioned before the convergence rate is exponential, but unfor-
tunately the theoretical bound on the exponent is not useful in practice: we are left
to decide when we have reached the equilibrium distribution by heuristic methods.

We should not let the mathematical formalism outlined above obscure what can
actually happen to such a Markov process. The main danger is that the system will
get stuck in a metastable state: Intuitively we may imagine the distribution g to
have several peaks separated by large valleys, then from some initial state we may
rapidly climb one of the peaks and not leave it (by a large low-probability fluc-
tuation) for a long time. This corresponds to the possibility that although P is
strongly ergodic in the strict sense, it nevertheless has some very small components.
This disease may be avoided to some extent by starting from widely different initial
conditions, but it is quite possible that there are regions of the space of con-
figurations which contribute importantly to the integrals which are hard to reach
from almost anywhere in the space (e.g., a small high peak surrounded by deep
wide trenches). Of course, we should not overlook the fact that the structure of g is
telling us something about the physics of the situation as well, the existence of two
peaks is evidence for a phase transition in the infinite volume continuum limit, and
thus if we see values for the Polyakov loop which clump together in two regions
with occasional jumps from one clump to the other we have a sensitive means of
measuring the value of PC (i.e., the transition temperature).

How do we construct a transition probability P which has g as a fixed point?
What we want is a method which alters the initial configuration locally (i.e., link by
link) so that we can take advantage of the locality of the action S. Suppose we can
find a method of updating a single link I such that the transition probability
P,(U, V) has g as a fixed point (U and u’ differ only by the value of the ,SU(3)
matrix on the link L); this gives us a Markov step which preserves g but is
manifestly not strongly ergodic. We can now use the simple fact that if P, and P,
both have g as a fixed point, then so will the composite transformation PI- Pr (P,
followed by P,). Therefore, if we step sequentially through every link on the lattice
applying the Markov step defined by P,, the cumulative effect of the entire sweep
through the lattice may itself be viewed as a single step of a Markov process which
not only preserves g but also is strongly ergodic (each individual link update is
assumed to be ergodic insofar as the new link variable may take any value in SU{3)
with a nonzero probability, and therefore it is possible to reach any new con-
figuration of U matrices after sweeping once through the entire lattice).

For most lattice models there are two popular methods of generating an update
for a single link .’ The first is the Metropolis algorithm [133, which randomly
chooses a new SU(3) matrix U’ subject to the conditions that 17’ and U’t must be
equiprobable, and that any SU(3) matrix can be reached after enough steps, and
then accepts or rejects the change depending on the change AS in the action. The
method is based on the fact that it satisfies the criterion of detailed balance,

I The true W(3) heatbath method Cl23 is impractically slow.

140 KENNEDY ET AL.

g(V) P,(U, V) = g(U’) P,(u’, V), which is easily shown (by integrating over V) to
imply that g is a fixed point of P,. Define the quantity < to be the ratio g(V)/g(V),
then we define

P[(U, CT')=
i

l
if (21

5 if <cl,

and detailed balance is immediately satisfied. The quantity < is readily computed for
the case g(U) = e-ps(u), as then { = e Bds Unless /I is small (which is known as
strong coupling, because p is inversely proportional to the (square of) the QCD
coupling constant) this method tends to produce a low acceptance rate for changes,
or, to put it another way, we spend most of the computer time suggesting changes
which are then not used. To increase the acceptance rate it is usual to generate a
candidate u’ uniformly from a small region of group space around U, and then to
repeat this procedure several times so as to get a sufficiently large change U’ - U
cumulatively. One advantage of such a multiple hit strategy is that the computation
can be factored into the computation of what we call a staple (the sum of three-link
products contributing to dS) which is common to each hit on a given link, and the
final evaluation of AS and performance of the acceptance-rejection step.

The second method is the heatbath algorithm, which generates the new link with
a probability P,(U, U') cc g(17’). This has the great advantage of generating the new
link variable with exactly the probability required by g, and that the new link value
is independent of the old one. This serves to reduce the correlation time T' which is
of importance for the reasons outlined before. Sadly, for SU(3) the amount of com-
putation required to generate a new link variable according to the heatbath dis-
tribution is quite prohibitive. For the case of SU(2), however, it is relatively
straightforward to generate the required distribution; this led Cabibbo and
Marinari [14] to suggest an algorithm which has many of the advantages of the
heatbath method but is computationally tractable. Their method, which we shall
call the Quasi-Heatbath (QH) algorithm, consists of considering two noncom-
muting SU(2) subgroups of W(3). We consider a new SU(3) matrix u which can
be reached from the old one U by the action of an element of the first subgroup.
Using an W(2) heatbath algorithm due to Creutz [151 it is easy to generate this
U’ according to the full heatbath distribution restricted to the accessible set of
N(3) matrices. The same procedure is now repeated for the second SU(2) sub-
group. As each step in this procedure has g as a fixed point, and as the combination
of the two steps is weakly ergodic (i.e., if repeated often enough any W(3) matrix is
accessible) it follows that this is a valid procedure to generate the desired Markov
chain. Empirical tests [16, 143 have shown that the QH algorithm with two sub-
group hits is about a factor of two better than a ten hit Metropolis update.
Although the QH algorithm is more difficult to vectorize, and certainly much more
complicated to code, than the Metropolis method we believe that the corresponding
decrease in T' well justifies its use. Using vectorization techniques described later
we have been able to make the QH program run as fast as, if not faster than,

EFFICIENT MONTE CARLO FOR su(3) 141

corresponding ten-hit Metropolis programs; further speed improvements in the
updating time are not crucial because the purely arithmetic evaluation of the staple
which is required for all updating methods currently takes about 50% of the CPU
time, even when fully vectorized.

VECTORIZATION TECHNIQUES

Parallel Updates

We now turn to the details of how the algorithms described above are implemen-
ted to take advantage of the features of the CYBER 205 computer.2 One of the
features of the CPU is that to obtain the high computational rate of which it is
capable (200 Mflops for a 2 pipe machine using 32-bit half-precision floating-point
arithmetic) it is necessary to make use of the vector processing instructions. This
means that we must arrange for identical operations to be performed successively
on a large number of consecutive elements of an array of numbers; indeed, to
approach the asymptotic flow rate mentioned above it is necessary to operate on
vectors at least a few hundred components in length. While this can be rather
awkward to arrange, and certainly makes the code somewhat more obscure than it
would otherwise be, it has the added advantage that the time spent in address
calculation, loop control, etc., using the scalar processor is a negligible fraction of
the total CPU time used (especially when the scalar- instructions can be scheduled
to be executed in parallel with the vector arithmetic). An unexpected consequence
of this is that there is little benefit to be obtained in a highly vectorized program
from coding it in assembly language rather than a high level language like
FORTRAN. It is interesting to mention here that all the timings given for our
program are in the absence of the instruction scheduling optimization, as we were
never able to use this option due to compiler bugs: indeed, the timings are
essentially unchanged for lattices of a physically interesting size even if we do not
use the optimizer at all.

It is immediately apparent from the discussion of Markov processes given before
that the order in which we update the links on the lattice is totally immaterial as far
as convergence of the algorithm is concerned (although the convergence rate may
be affected). In particular, there is no reason why we cannot update a whole family
of links simultaneously, provided only that the updates are independent; that is, the
value of a link being updated is not used in the computation of the staple for any
other link in the family. A standard method of finding such a family of indepen-
dently updateable links is to divide the sites of the lattice into two classes which we
call even and odd parities. The parities alternate on the lattice in such a way that
every even site is connected by the eight links in its coboundary only to odd sites,
and vice versa. The situation is quite analagous to the pattern of black and white
squares on a (two-dimensional) chessboard. Consider now the set of links in a
given direction emanating from sites of a given parity, no link in this set contributes

2 Reference [171 describes another program addressing similar problems using the CYBER 205.

142 KENNEDY ET AL.

Ftc. 1. An illustration of a “staple” and of the parity structure on a two-dimensional lattice. Light
lines represent even links, medium lines represent odd links, and dark lines show the links belonging to
the staple of a typical odd link.

to the staple required for the updating of any other link from the set, as may be
seen from Fig. 1.

To make use of this set we store the lattice in two arrays, one for even parity
links and the other for odd parity ones. We use the first array subscript to index the
lattice site within these classes, and the subsequent subscripts (which vary less
rapidly in FORTRAN) to index the colour components and direction of the U
matrices. This means that, say, all the (2,3) colour components in the z direction
are in consecutive memory locations, Furthermore, we store the real and imaginary
parts of the matrix elements in separate arrays and do not use the FORTRAN
COMPLEX data type at all. All of these arrangements serve to guarantee that we
may use the CYBER 205’s vector instructions to update all the links in the set
described above simultaneously.

Helical Boundary Conditions

In the discussion so far we have studiously avoided specifying the boundary con-
ditions (BCs) to be imposed at the edges of the lattice, other than that the lattice
must be periodic in the temperature direction. It is conventional to use periodic
BCs in the spatial directions as well, but there is no fundamental reason why this
has to be so: for the physical interpretation of lattice QCD results (with the notable
exception of finite size scaling analysis) the spatial size is assumed infinite, or at
least sufficiently larger than the temperature direction that the finite size effects may
be ignored. In order to implement periodic BCs using the vectorization technique
outlined above, however, it becomes necessary to perform random GATHER and
SCATTER operations. While these are available in the hardware instruction reper-

EFFICIENT MONTE CARLO FOR su(3) 143

toire of the CYBER 205, they are relatively slow operations and require extra tem-
porary storage space for the gathered vectors. The actual speed of a GATHER
operation depends on how many memory bank conflicts occur, which in turn
depends on the nature of the index vector, but a rate of about 1.5 cycles (30 nsec)
per element seems reasonable. This is to be compared with a rate of 0.5 cycles
(10 nsec) per arithmetic operation on a one-pipe machine using half-precision
arithmetic, and 0.25 cycles (5 nsec) for a two-pipe CPU.

With these timings in mind, it seems desirable to avoid the use of GATHER
operations when possible, and in the present case it is quite easy to do so. What we
do is to assign an integer index to each site on the lattice according to the rule

X(x, y, z, t) = x + n., y + n,n,.z + ?z,n,nzt (mod v,v,),

which is, of course, the same rule as is used to map a multidimensional array into
the one-dimensional addressing scheme of a computer memory. To reach a
neighbouring site from (x, y, z, t) in any of the four lattice directions we just have
to add a fixed displacement to the starting site’s index, namely

J-(x+ 1, y, Z, t)=JV(x, y, z, t)+ 1,

J-t-5 y + 1, z, t)=Jl/(x, y,z, r)+n,,

Jw, y, z + 1, t) = Jv(x, y, z, t) + KG,,,

Aqx, y,z, t+l)=JV(x, y,z, t)+n,n,n;, 1

(mod ~x~,~z~,).

More generally, the index of a site reached from (x, y, z, t) by displacement vector
(x’, y’, z’, t’) is

M(x+x’, y+ y’, z+z’, t + t’)rM(x, y, z, t)+ J-(x’, y’, z’, t’) (mod n,n,n;n,).

This scheme automatically imposes what we call helical BCs, which have the
desirable property of making vectorized arithmetic entirely straightforward (a
neighbour of a given site can be found by a single addition irrespective of the
location of the site relative to the boundary. An intuitive picture of the meaning of
helical BCs may be obtained by looking at the “extended zone diagram” for the
two-dimensional analogue (we just draw a rectangle for our lattice volume and next
to it the images of the lattice due to the BCs), for periodic BCs the diagram is just a
regular pattern of unstaggered squares (Fig. 2). Note that the lattice is still periodic
in the last direction, and that this necessary temperature periodicity is explicitly
imposed by specifying that the above congruences are to be calculated modulo the
number of lattice sites.

In order that the parity structure and the helical BCs be compatible with each
other, we must ensure that the parity is well-defined globally over the whole lattice.
This is easily done by defining the parity of a site (x, y, z, t) in terms of its index

4x, y, z, t) = J”(x, y, z, f) (mod 2L

581&4/l-10

144 KENNEDY ET AL.

FIG. 2. The “extended zone diagram” for two-dimensional helical boundary conditions.

which is well defined provided that n,n,n,n, is even. As we further require that
nearest neighbour sites in any direction have opposite parities, and

71(x + x’, y + y’, z + z’, t + t’)

= Jqx + x’, y + y’, z + z’, t + t’)

= Jqx, y, z, t) + J-(x’, y’, z’, t’)

-71(x, y, z, t) + n(x’, y’, z’, t’),

n(1, 0, 0,O) = 1,

n(0, 1, 0,O) En,,

(mod 2.1,

(mod 2),

we must have n,, n,,, and n, all odd (and thus n, even). We have shown that helical
BCs satisfy all the necessary conditions provided that we have a lattice whose
spatial dimensions are odd and whose temperature dimension is even: this is not
too great a constraint, especially if we note that with periodic BCs we are con-
strained to a lattice all of whose dimensions are even.

The implementation of the periodicity in the temperature direction requires that
we either always calculate the index of a neighbouring site modulo the lattice size,
or that we keep up-to-date copies of the bottom t-slice of the lattice above the top

EFFICIENT MONTE CARLO FOR su(3) 145

t-slice, and vice versa. We have opted for the latter alternative, despite the fact that
it requires more storage space, because otherwise we would have to use GATHER
instructions. The copying of these slices for the BCs takes a negligible amount of
CPU time compared to the update and measurement times. We should also men-
tion that the index defined above is not used directly in the program, because we
store the even and odd links of the array separately, but the transformation to the
actual array subscripts required poses no new problems of principle.

Vector-Scalar Quasi-Heatbath Implementation

We now turn to the details of the vectorized implementation of the QH
algorithm. It is commonly believed that stochastic methods are ill-suited to parallel
or vector processors because of their fundamentally random nature; we hope to
explain why this is not necessarily true, and in particular how we can make use of
the sparse vector instruction capability of the CYBER 205 combined with its fast
scalar processor to implement an algorithm involving many random decisions.

First, let us specify the steps involved in applying the QH algorithm to update a
link matrix U. The mathematical background to the algorithm has already been
discussed, so we will just present the algorithm here as a recipe.

(1) Compute the staple ,Z for the link U.
(2) Compute the submatrix Z of ZU corresponding to the appropriate W(2)

subgroup.
(3) Set

<=fdDet(E-Zt+II Trg).

(4) Set

- 1
U=~(8--Et+l TrZ).

(5) Set

a,=-!-ln[p,(l -e-4pc)+,-4ai;] + 1,
2l-v

where 0 < p1 6 1 is a uniformly distributed (pseudo) random number.
(6) Generate another uniform random number 0 < pz < 1, and if pz >

JGi then go back to step (5).
(7) Generate a uniform random number - 1~ p3 < 1, and then set a3 =

P3 Ji=Z.
(8) Generate another uniform random number, this time 0 < p4 < 1, and set

a, = JSO Jm cos(271p4),

a2 = JsO Jm sin(2xp,).

146 KENNEDY ET AL.

(9) Set P= 8-‘A, where A is the SU(2) matrix constructed by multiplying a,
by the unit matrix and a,, a*, and a3 by the appropriate Pauli matrices;

A=&)21 +i 1 ujaj.
j= I

(10) The updated link variable is u’= UV, where V is the SU(3) matrix
made from the SU(2) submatrix r, e.g.,

1 0 0

() 0
P

0 /

Clearly, all of the steps except for (5) and (6) are straightforward numerical com-
putation. Step (1), in particular, involves adding together six three-link products of
SU(3) matrices: this requires 2,466 floating point operations.

The remaining arithmetic steps (i.e., all except steps (5) and (6), but including the
precomputation of constants used in step (5)) require only the efficient evaluation
of several mathematical functions, in particular the sine and cosine functions (of
which we compute only one and extract the other using a square root-recall that
square root extraction is a hardware operation on the CYBER 205 which has a flow
rate almost equal to that of multiplication or addition when vectorized), and the
exponential function. We use the standard FORTRAN library functions for these,
as any improvement by hand coding would only increase the speed by a percent or
less.

We also make great use of the built-in random number generator, using the “vec-
torized” full-precision version VRANF in the FORTRAN library. This is a linear
congruential generator with a multiplier of 84,000,335,758,957 and no additive
term, and works modulo 247. We have verified that this generator satisfies the
criteria of the spectral test up to at least nine dimensions. Unfortunately, VRANF is
in fact a scalar loop, and is therefore almost an order of magnitude slower than it
should be (it also drops one number from the sequence when switching between
scalar and vector calls): We have, therefore, rewritten the same generator using vec-
tor instructions.

The part of the algorithm whose vectorization is not obvious is the accept-reject
steps. On a scalar computer we would just generate candidate a, values for one link
until one was accepted, and then move on to the next link. To vectorize this
procedure we are forced to take a different approach. Recall that we obtain a suf-
ficient vector length by simultaneously updating all the links of a given parity in a
given links vectorize

EFFICIENT MONTE CARLO FOR su(3) 147

and Q8VCTRL) to compress the coefficient vectors used to compute a, so that they
contain entries only for links which have not yet had their a, value accepted. Then
we generate another candicate a, for only these links, expand the resulting vector
back to the original length, combine the new a, values with those already accepted,
and recompute the bit vector REJECT. This vectorized loop is then iterated until
almost all the a, values have been accepted. The time consuming part of the
calculation is the generation of new a, values, which involves the evaluation of a
logarithm; the vectorization scheme outlined above ensures that this critical part of
the computation is only performed for those links which still need to be updated,
and therefore it suffices to make the accept-reject steps as fast as the arithmetic
steps in the algorithm. To indicate how successful this vectorization scheme is, we
observe that the accept-reject steps take almost exactly twice as long to execute
when we use a version of the FORTRAN compiler library which calculates
logarithms using full-precision operations.

In the preceding paragraph we stated that we continue iterating the vectorized
accept-reject loop until almost all the links were updated: If we had been using a
true parallel processor this would be the best we could hope for, but on the
CYBER 205 we can make use of the presence of a very fast scalar processor too.
The problem is that for the values of B which arise in practice the acceptance rate in
step 6 is about 25 %, so the fraction f of reject links after t attempted updates is
f Xe-‘l”‘4’3)~:,-o.3r. this means that while 50% of the links have been updated after
about 2.4 attempts on average, it would take ten times as many trials to reducefto
0.1%. To get around this law of diminishing returns we keep track of the number of
1 bits in REJECT (using the Q8SCNT function) and when this falls below a pre-
determined number we switch to a scalar loop which steps through the remaining
rejected links and generates a, values for each in turn until they are accepted. Of
course, the scalar loop is much slower than the vector one, but it does not have the
overhead of vector start-up times and the time required to expand and compress
the vectors, so there is a cross over point at which scalar processing becomes
cheaper: empirically this turns out to be for a vector length of around 60, although
the exact value used is not at all critical. The total time spent in the scalar loops is,
of course, much less than the time spent in the vector loop.

Typical relative times spent in the various parts of the program are indicated in

TABLE I

Fraction of Time Spent in Various Parts of the Program

Computation of staple 44 %
Other arithmetic steps 15%

Vector accept/reject algorithm 30 %
Scalar accept/reject algorithm 2%

Measurement of Polyakov loops 6 %
Measurement of mean plaquette 2%

Reunitarization 1%

148 KENNEDYETAL.

Table I. The timings depend on the lattice size and shape, the frequency with which
measurements are made and so on, so the numbers are only a rough guide. In par-
ticular, the measurement of Polyakov loop correlation functions can take about
30% of the total time if n, is small.

REUNITARIZATION AND GAUGE TRANSFORMATIONS

A variety of features are built into the program to ensure that numerical
rounding errors are kept under control, and to check that the program is working
properly.

The principle consequence of rounding errors is that after several sweeps through
the lattice, the link variables drift away from the group manifold. An SU(3) matrix
may be parameterized as

U

i 1 v 3

u*xv*

where u and v are two orthonormal three component complex vectors with respect
to the natural sesquilinear inner product. To reimpose the constraints implied by
this parameterization, every so often the subroutine RESET is invoked to
reunitarize the link variables. This is done in three steps,

(i) the first row of the matrix is resealed so that its length (with respect to
the natural metric) is one,

(ii) the second row is made othogonal to the first and then renormalized,
and finally

(iii) the last row is constructed from the first two according to the
parameterization given above.

During this procedure we keep track of the mean square deviation of the U
matrices from unitarity, and the maximum value of this parameter is printed out at
the end of each run. We have found that reunitarizing every live sweeps is more
than adequate to keep the rounding errors under control (the maximum RMS
deviation is of the order of one part in a million, which is roughly what is to be
expected from using 32-bit arithmetic precision), and reunitarizing this often does
not increase the computation time significantly.

It is useful to verify that all the parts of the program preserve the underlying
gauge symmetry of QCD. This may be done by performing a random gauge trans-
formation using the subroutine GAUGE and checking that physical-measured
quantities are unchanged (up to the number of significant digits, which in our case
is about six). The gauge transformation merely consists in generating a random
SU(3) matrix at each lattice site, and then multiplying each link by the gauge trans-

EFFICIENT MONTE CARLOFOR su(3) 149

formation matrices on its boundary. It is rather hard to generate truly random
SU(3) matrices, in the sense of their being distributed uniformly with respect to
Haar measure, but this is not necessary in the present case as physical observables
must be invariant under any gauge transformation.

The program also contains subroutines to save and restore on disk the lattice
configuration along with all the useful parameters and statistical accumulators
associated with it (DISK), subroutines to initialize a lattice to a totally ordered or
disordered configuration (START), and various other utility subprograms.

FUTURE PLANS

The previous sections described the current version of the program, which has
been very extensively tested both against previous Monte Carlo results and analytic
calculations such as strong coupling expansions where these are known. We have
used the program to measure the nature and location of the phase transition [181
and the quark-antiquark potential near the continuum in lattice QCD [19]. We
now turn to the improvements which will be incorporated in the next version of the
program which is currently being developed. The principal change is that the
program will be able to run on almost arbitrarily large lattices without incurring an
intolerable paging overhead.

Improvements in Matrix Multiplication Algorithm

In the current version of the program the SU(3) matrix multiplications are
carried out in the obvious manner, assuming that the matrices involved are
arbitrary 3 x 3 complex matrices. Naturally, however, we do not use the COM-
PLEX FORTRAN data type, because this causes the real and imaginary parts of a
complex variable to be stored consecutively in memory, which prevents proper vec-
torization; instead we ,write all the operations in terms of the real and imaginary
parts explicitly. Nevertheless, certain further optimizations are possible, first,
because it is not optimal to treat complex matrix multiplication in the same way as
real matrix multiplication, that is, by replacing the real additions and mul-
tiplications by complex ones; and second, because we can make use of the fact that
the matrices are all elements of the defining representation of the group SU(3), and
therefore satisfy certain constraints.

The number of operations required for the various calculations involved in com-
puting the staple are summarized in Table II, where (tl) is the naive method of mul-
tiplying two complex numbers and (/?) is a trick to reduce the number of mul-
tiplications by factorization:

(a + ib)(c + id)

=(ac-bd)+i(ad+bc)

=(a+b)(c-d)+ad-bc+i(ad+bc),

(a)

m

150 KENNEDY ET AL.

TABLE II

The Number of Floating-Point Operations Required for Various Arithmetic Computations”

Computation Operations

+ x

Complex scalar addition 2 0

Complex scalar multiplication (a)0 2 4

Complex scalar multiplication (/I)” 5 3

n x n real matrix addition iI2
n x n complex matrix addition 2n2
n x n real matrix multiplication d(2n - 1)

n x n complex matrix multiplication (a) 8n3 - 2n2

n x n complex matrix multiplication (p) tin3 + 2n2

0 Methods (a) and (fi) are explained in the text.

multiplication takes 180 operations using method (/3) as opposed to 198 by method
(a), which means one can get a 10% speed increase by using method (b).

The other trick which can be used to speed up the arithmetic is to compute only
the first two rows of the product matrix, because the third row can be reconstructed
from the first two using the parameterization of an SU(3) matrix given before.

Large Lattices

The current version of SZINHUR has been used extensively on lattices of various
sizes, but it generates many page faults when it is used on a lattice size which is too
large to fit into real memory. It is important to study the physics on somewhat
larger lattices, and therefore we are implementing the following method of
minimizing the I/O overhead.

The basic idea is, as always, to maximize the amount of computation which can
be performed on that part of the lattice which is resident in real memory. Naturally,
if the size of the lattice is larger than the size of the memory then it is unavoidable
that the whole lattice will have to be paged in and out of memory at least once per
sweep; this indicates that it is efficient to perform several updates on each link of
the lattice while it is resident in real memory. On the other hand, it should be clear
from the theoretical discussion of the Monte Carlo method given above that we
must perform many sweeps through the lattice to generate statistically independent
equilibrium configurations; to put it another way, updating parts of the lattice
separately will bring them to local equilibrium, but global equilibrium is possible
only by many sweeps through the entire lattice. The lesson here is that while perfor-
ming multiple updates on a given section of the lattice is desirable from the view-
point of writing an efficient program to run on large lattices, this should be done
only in moderation if we want to reach global equilibrium, which was the reason
for using a large lattice in the first place. We see, therefore, that there is a limit to

EFFICIENT MONTE CARLO FOR St4 3) 151

the amount of useful computation that can be performed on a large lattice for a
given amount of I/O data transfer. Fortunately, even on a one megaword memory
machine we should still be able to reduce the performance degradation due to
I/O to a factor of 1.25 or less (N.B., while the I/O overhead increases the cost of
running the program, it does not affect the update times; to this extent the update
times do not give a complete specification of the performance of the program).

We should also point out here that although the CYBER 205 has virtual
memory, this feature does not solve the problem of running on a large lattice. It
does serve a useful purpose, however, insofar as the amount of real memory
available to the program is larger than would be otherwise, because unneeded
system routines and parts of the Monte Carlo program itself which are not
currently being executed can be paged out of real memory.

To explain why virtual memory does not solve the major problem it is useful to
make clear the distinction between virtual addressing and paging. Virtual address-
ing is implemented by the CYBER 205 hardware, and translates an address in the
essentially infinite virtual address space into a real memory address. This trans-
lation is made in discrete pages of fixed size (64K words for large pages and 2K
words for small pages). On a one megaword machine this means that only 13 large
pages or 416 small pages (or some combination of the two) are available. The
utility of virtual addressing is that virtual addresses need not be contiguous, and we
can associate each page with an arbitrary region of virtual space. Paging, on the
other hand, is a service of the operating system which, when informed by the
hardware that a given virtual address requested does not have a corresponding real
memory location, swaps a page from real memory with the image of the desired
page from the paging disk.

From our point of view virtual addressing and paging pose conflicting con-
straints. The cost of a page fault is 32 msec for overhead plus 1 msec per block data
transfer time; this means that a small page fault costs about 18 psec/word, whereas
a large page costs only 2.4 psec/word. For a performance degradation of less than
1.25 we must perform more than 3,350 Flops (small pages) or 450 Flops (large
pages) on every number (halfword) paged in. This consideration indicates that large
pages reduce the I/O cost of the program by a factor of 7.5 relative to small pages.
On the other hand, the nature of lattice QCD requires that we know the values of
all the link variables contributing to the plaquettes in the coboundary of any link
being updated. As each such link has 18 real components, and the vectorization
method described before requires a long vector for each lattice direction and parity,
we must have at least 144 vectors resident in real memory concurrently. It is clear
that even using small pages we are very hard pressed to have enough pages to tit
these different vectors into memory. The idea would be that each vector has a
length corresponding to the number of lattice sites, but that we would work on only
a section of the lattice at a time, allowing the system to fetch and map each section
into memory automatically. Vectorizability requires that each of the vectors is con-
tiguous in virtual memory, and hence the resident part of each vector must take up
a whole page. The reason why it is not easy to do this, when we have 416 small

152 KENNEDY ET AL.

pages and need only 144 vectors, is that we must ensure that the neighbouring sec-
tions of the lattice which are referred to but not updated while working on a given
section are available in real memory too. Working space for vector temporaries is
not negligible either.

After weighing all these considerations, we concluded that the best way to enable
the program to work on large lattices in an efficient way is to ignore the virtual
memory, and to perform the I/O manipulations explicitly. We mean by this that we
translate explicitly from an external data structure in which sections of the lattice
are mapped into pieces of sufftcient size, say large pages, into an internal one in
which the vectors representing the components of the link variables are contiguous
and compactly mapped into the available real memory. The actual I/O operations
may be performed using the CYBER 205 implicit I/O facilities, or they may be per-
formed using explicit I/O requests, this distinction is not important for the basic
design of the program.

The disadvantages of this method are threefold,

(i) the code becomes more complicated as it has to perform the memory
mapping itself, rather than using the existing implicit I/O facilities,

(ii) data has to be moved from a buffer into the working arrays, which takes
time, and

(iii) the amount of available space is reduced by the need for buffers.

An advantage is that the program can store only the top two rows of the SU(3)
matrices on disk, and reconstruct the last row as part of its memory mapping,
which reduces the amount of data transfers to disk to be reduced by 4. We should
point out that disadvantage (ii) is not very serious, as we are going to perform a
large number of useful operations on each number input anyhow.

The helical boundary conditions make the splitting of the lattice into sections
very easy, because the updating algorithm does not need any information about the
position of the spatial boundaries of the lattice. This is because the BCs are
imposed automatically by the way that the link variables are stored in memory. The
size of a section (the part of the lattice resident in real memory at a given time) is
determined only by the available real memory size, and not by the lattice size: this
is to be contrasted with the situation using periodic BCs, where either one is con-
strained to a particular spatial lattice size or one has to keep track of the boundary
conditions in a much more difficult way.

Fermions

The program computes physical quantities for quenched QCD, that is the theory
of strong interactions between quarks mediated by dynamical gluons, but it does
not include the effect of dynamical quarks. While there is some reason to believe
that this approximation does not fundamentally change the nature of the theory, it
would be much more satisfactory to include the effect of dynamical fermions.
Several methods of doing this have been tried, but none of them are truly satisfac-

EFFICIENT MONTE CARLOFOR su(3) 153

tory. We have a new stochastic method which we have tested successfully for simple
two-dimensional models which we intend to implement for QCD. This will involve
a (large) new subroutine to be invoked for every link update, but the rest of the
program, such as measurement routines, reunitarization, random gauge transfor-
mations, etc., will be unchanged. The reason why including fermion effects is so
hard is that they involve nonlocal quantities on the lattice, and thus the update
time will be much larger than for the pure glue sector of the theory, perhaps by as
much as a factor of 1,000. This being so, efficient implementation of the program
becomes even more crucial, and in this case we can make use the GATHER and
SCATTER instructions. Even so, we will have to be content with small lattices and
relatively fewer sweeps through the lattice, but we hope to be able to make
meaningful measurements of at least a few of the simpler properties of the full
theory.

APPENDIX

In this Appendix we shall derive the basic results about the convergence of
Markov processes, explain in detail the nature of the QH algorithm [14], and dis-
cuss the algorithm [151 which it uses to generate a true SU(2) heatbath dis-
tribution.

Markov Processes

Consider a system 0 which can be in any one of a family of states 9’. At time t Sz
has probability Q,(S) of being in state s E 9, where Q,: 9’ -+ [0, l] is the probability
distribution of Sz at time t. If 1;2 is in state aE- Y at time t, then it has probability
P(b + a) of being in state b E 9’ at time t + 1. The operator P: 5” -+ Y defines a
Markov Process. We have immediately the following normalization conditions:

.Fy Q,(a) = 1 (Sz must be in some state), (Al)

1 P(b+-a)=1 (each state a has to go somewhere). 642)
be9

Q is afixedpoint of P if the following relation holds

.Fy P(b + a) Q(a) = Q(b) WI. (A3)

Detailed balance is satisfied iff

P(b t a) Q(a) = P(a c 6) Q(b) Wa, b). (A4)
THEOREM. Detailed balance is sufficient (but not necessary) for Q to be a fixed

point of P,

c P(b t a) Q(a) = c P(a + b) Q(b) = Q(b). cl (1

154 KENNEDY ET AL.

If P, and I’, are (arbitrary) Markov processes, then so is

P(a+b)=p,(a+-c)P,(ctb), (‘45)

because (i) P,(a + C)E [0, l] and P,(c +- 6) E [0, 1] = P(a t b) E [0, l] (clearly
P(a + 6) Z 0, and CC P,(a e c) P,(c + 6) <CC Pr(c +- 6) = 1 by (A2)), and (ii)

c P(a + b) = c P,(a + c) P,(c +- b)
u u.c

= c {z P*(a + 4) P,(c + b)
c u

= c P,(c +- b) = 1,

hence P satisfies (A2).

THEOREM. Zf Q is a fixed point of both P, and P,, then it is also a fixed point
of P.

c P(b + 0) Q(a) = c c f’,(b + cl p,(c +- a) Q(a)
u u ‘

= 1 PAb + cl 1 f’,(c + a) Q(a)

=;P,(btc);(c)=Q(b).

We may define a metric on the space of probability distributions by defining the
distance

(A(5)

We may easily verify that this definition satisfies the necessary axiomq3

d(Ql, Q,)=O; d(Q,, Qz) > 0 (QI # Qd (Positivity);

d(Ql, Q,) = d(Q2, QI) (Symmetry);

d(Q,, Qz)+d(Qz, Q,)>d(Ql> Q3) (Transitivity).

We shall define P to be strongly ergodic if

P(a e b) > 0 W, b).

(A7)

(‘48)

(A91

(A101

3 The required inequality is a special case of the Minkowski inequality. For xi, y, E R we have
lx,1 + ly;l Z lx,+ yil -2 lxil +IE, IYJ >X, Ix,+ y,I; hence E., lQl(u)-Q2(aN +E lQAu)-Q3(u)l >
IL lQ,(~)-Q,(~)+Q,(u)-Q~(u)l =Z IQ,(a)-QdaN.

EFFICIENT MONTE CARLO FOR su(3) 155

We may then prove

THEOREM. A strongly ergodic Markov process P is a contraction mapping with
respect to the metric d,

4PQl, f’Q2)~a4Ql~ QJ (VQ, > Qd, (All)

where a< 1.

For QI = Q2 the result (All) follows trivially from (A7), so we may assume that
Q, #Q,. Let us define

de(b) = Ql(b) - Qz(bh 6412)

and Y+ z {~1dQ(~)~O}c19’. From the definition of d (A6),

4PQ13 PQd = 1 I(PQl)(a)- (f’Qd(a)l
UEY

= 1 { 1 P(a+b) AQ(b)- 1 P(a+ 6) dB(h))
UEY beY, bE.Lgm

(using the identity /1x1- (y((= ((xl+ (y((-2min((x(, 1~1))

= c c P(acb) ldQ(b)l-2 c rn> 1 P(a+b)dQ(b)
UE.Y be9 0e.Y bc.Yi

= ,zy lAQ(b)l - 2 1 mjn 1 P(acb)dQ(b)
oe.Y bs9+

d c ldQ(b)j -2 c min P$” ,,c, AQ(b) (A13)
b E .Y us!? f

f

with P@? E min, E 9 Ill,” P(a t b) > 0. However, using the normalization condition (Al)
we have

1 AQ@) + c AQ(b)= c AQ(b) = 1 Q,(b)- 1 Q2(b) = 1 - 1 =o,
he.‘?, he.% h E Y h t .‘y h E 55

156 KENNEDY ET AL.

SO

(A14)

Combining (A13) and (A14) we find

or d(PQ,, PQ,) < ad(Q,, Q2) as required, where

O<LY<l- 1 P!$“<l. (Al5)
UEY

Starting from an arbitrary probability distribution Q we may generate the
sequence of distributions (Q, PQ, P*Q, P3Q,...) by successive application of the
Markov matrix P. If P is strongly ergodic then this sequence converges to a unique
limit P”Q, because the space of probability distributions is complete in the
topology generated by d, and by the following result:

LEMMA. The sequence (Q ,..,, P”Q ,..., P”‘Q,...) is Cuuchy, that is, V’E 3N such that
Vn, n’ 2 N,

0 6 d(P”Q, P”‘Q) < E. (A161

If Q is a fixed point of P then this is obvious, otherwise by transitivity (A9)

d(P”Q, P”‘Q) < d(P”Q, P”Q) + d(P”‘Q, P”Q)
n-N-1

6 1 d(PN+kQ, P”‘+k+lQ)
k=O

n’-N- I

+ c d(PN+k’Q, PN+k’+lQ)
k’=O

n-N-1 n’-N-1

G c aN+kd(Q, PQ)+ 1 aN+k’d(Q, PQ)
k=O k’=O

n’-N-1

= aN4Q, PQ)
2-an-N-an’-N

l-a

<g d(Q, PQ),

EFFICIENT MONTE CARLO FOR su(3) 157

and therefore (A16) is satisfied VE > 0 with ZV> ln(s(1 - a)/2d(Q, PQ))/ln a, where a
satisfies (A15).

Quasi-heatbath Algorithm

When performing stochastic computations to solve lattice gauge theories we need
to generate field configurations according to the probability distribution

(Al7)

where Z = j(dU) e Pgs(u) Y is the gauge group, U is the Y-valued link variable on
the link under considera;ion, S(U) is the lattice action viewed as a function of U (it
also depends upon the neighbouring link variables of course), and (dU) is the Y-in-
variant Haar measure.

Whereas a true “heatbath” method would produce new link variables according
to this distribution, the QH method merely ensures that given an initial U dis-
tributed according to (A17) it will generate a new u’ with the same distribution:
i.e., P(U) is a fixed point of the QH transformation. If we further ensure that any
possible U’ E $9 can be generated by a sequence of such transformations
(P”(U + V) > 0 for large enough n) then applying the method stepwise to each link
on the lattice is a weakly ergodic procedure. These two facts together ensure con-
vergence of the Markov process to the desired equilibrium distribution (A17).

The QH method consists of applying a sequence of transformations restricted to
some subgroup X c $9. We select an element h E 2 and define u’ = Uh, where we
choose h such that the u’ value is distributed according to (A17) restricted to the
image of U, namely US. In other words, we generate u’ with a heatbath dis-
tribution over the subset of Q which can be reached by a transformation in 2. A
single “hit” of this sort is not even weakly ergodic in general, because &’ does not
act on 9 without fixed points; however, if we use a sequence of hits using different
subgroups (J+?, X’,...) such that S has no fixed points under this action, then weak
ergodicity ensues.

Note that

(i) the QH procedure is not a heatbath,
(ii) it satisfies detailed balance for a single hit (because it generates a heat-

bath distribution over accessible states), and
(iii) it does not satisfy detailed balance for multiple hits.4

Suppose we generate h with distribution Qu(h), then u’ will be distributed
according to

I”(u’) = J (dh)(dU) P(U) QJh) 6(U’ - Uh). (Al8)

41f hEX, h’E.V’, then U’=lJhh’ 3 U = U’h’ ‘h - ’ # U’EF, because in general there are no);E Z,
p ~3” satisfying h’-‘h-l = 6?.

158 KENNEDY ET AL.

Our claim is that if QU(h) is a heatbath distribution restricted to UY?, or to be
precise

Q,,(h) = 1 e-ps(Uh)X(h),

where x is the characteristic function for 2, and Z,, = j (d/z) e-~scUhJ~(h), then P’
will equal P. This is easily proved, for

P’(U’) = i‘ (dh)(dU) P(U) Q.(h) 6(U’ - Uh)

= (dU) P(U) Q,,(U-‘U’)
I

where h = I/- ’ U’ as before, and h” = h’ - ‘h. Finally,

P’(U)= P(V)
j (dh)e- ‘=(“?(h)

j (dh”) e-
= p(u’)

BS(U’h”-‘)X(h”) 9

(A201

(A21 1

(A-22)

where in Eqs. (A20), (A21), (A22) we have made use of the invariance of the Haar
measure and of the characteristic function x,

(dh) = (d(Uh)),
(dh”) = (d(h’-- ‘h)) = (dh’-‘) = (dh’),

X(hh”-‘) = X(/y’) = X(/z”) for x(h)= loh~%.

Creutz Algorithm

The main problem is thus reduced to generating the distribution (A19). This may
be done using Creutz’s SU(2) heatbath algorithm for the interesting case when
X = W(2), and when the action has the form Re Tr CU, where C is the sum over
all six “staples” in the coboundary of link U. Note that z $ Y in general. According
to (A19) we want to generate h such that its distribution is

Qu(h)cce(8/3JReTr=,‘h x(h).

EFFICIENT MONTE CARLO FOR su(3) 159

For the cases of interest h may be represented as a 2 x 2 SU(2) matrix h embedded
in a 9 matrix, and Tr ZUh = Tr Eh+ const., where E is also a 2 x 2 matrix: In prac-
tice E is a trivial submatrix of CU. We must, therefore, generate the distribution

1 Q&)=Z, e (b/3) Re Tr Eh (A23)

for hi N(2) and E an arbitrary 2 x 2 complex matrix:

h=7Q +iIi.a (~EE,~*+ii’h=l),

T- ‘;: % +iE.a Y-Y0 (&EC).

Now,

ReTr&=ReTr[(&j +iS.e)(&ll +&.a)]

=ReTr[(E&-E.fi)j +(...).a]

= &j Tr uh;

where u E SU(2), and ?&, = Re E,,, Ejr = Re 8. Consider E- .$ = (& - z$) I +
i(E + B*) * (r and Tr Et = 2z$, hence

E - @+I TrEt=2Re(EO)Q +2iRe(%).a

= 25~~1 + 2itu. c = 2524,

so we have

4<2=Det[E-zt+II Tr@],

1

“=z(-
z-g++ TrL?),

and from (A23) Q,(h) = Z; 1e(8’3)5 Truh.
Writing a = uh~ SU(2) we may parameterize a as a =a,1 + ia. c with (aa~ [w,

ai + a.a = l), and Haar measure on SU(2) is (da) = da,d3a,6(I- ui- a.a). In
polar coordinates

(da) = duo dr dt9 dcp “;(; ;;Dq,) 6(1 -u; - r*)
> 7

= 4 dso da, dr d0 dcp sin 8&r - JGi),

which means we should generate a, with the distribution

P,(u,) a JKg e(2’3)8500, (~24)

and then generate ui uniformly on a 2-sphere of radius Jx@ The algorithm to
generate this distribution is straightforward, the exponential part is generated by

160 KENNEDY ET AL.

evaluating a logarithm, and the square root factor is imposed by a simple accept-
reject test. As the details have been specified already in the main text, we will not
repeat them here.

ACKNOWLEDGMENTS

The generous support by the Rechenzentrum der Universitat Karlsruhe was essential for this research
to be carried out. We thank A. Schreiner and the staff of the Recheruentrum for their assistance and
encouragement. We have also benetitted from the advice of D. Sandee (CDC). We would like to thank
the Deutsche Forschungsgemeinschaft for their generous support. This work is based upon research sup-
ported in part by the National Science Foundation under Grants PHY77-27084 and PHY83-13324,
NASA, DOE, and the United Kingdom SERC.

REFERENCES

1. K. G. WILSON, P&s. Reo. D 10 (1974), 2445.
2. K. G. WILSON AND J. KCGUT, Phys. Rep. C 12 (1974), 75.
3. D. J. GROSS, R. D. PISARSKI, AND L. G. YAFFE, Rev. Mod. Phys. 53 (1981), 43.
4. R. W. B. ARDILL, M. CREUTZ, AND K. J. M. MORIARTY, Phys. Rev. D 27 (1983), 1956.
5. F. GIJTBROD, P. HASEN~RATZ, Z. KUSZT, AND I. MONTVAY, Phys. La. B 128 (1983), 415.
6. G. PARISI, R. PETRONZIO, AND F. RAPUANO, Phys. Lefr. B 128 (1983), 418.
7. J. D. STACK, Phys. Rev. D 29 (1984), 1213.
8. D. BARKAI, K. J. M. MORIARTY, AND C. REBBI, Phys. Rev. D 30 (1984), 2201.
9. K. SYMANZIK, in “Mathematical Problems in Theoretical Physics” (R. Schrader er al., Eds.),

Springer, Berlin, 1982.
10. P. WEISS, Nucl. Phys. E 212 (1983), 1.
11. K. BINDER, in “Phase Transitions and Critical Phenomena” (C. Domb and S. Green, Eds.):

Academic Press, New York, 1976.
12. E. PIETARINEN, Nucl. Phys. B [FS3] 190 (1981), 349.
13. N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, A. H. TELLER, AND E. TELLER, J. Chem.

Phys. 21 (1953), 1087.
14. N. CABIBBO AND E. MARINARI, Phys. Left. B 119 (1982), 387.
15. M. CREUTZ, Phys. Rev. D 21 (1980), 2308.
16. K. C. BOWLER AND B. J. PENDLETON, Nucl. Phys. B [FSIO] 230 (1984), 109.
17. D. BARKAI, K. J. M. MORIARTY, AND C. REBBI, Comput. Phys. Commun. 32 (1984), 1.
18. A. D. KENNEDY, J. KUTI, S. MEYER, AND B. J. PENDLETON, Phys. Reo. L.etr. 54 (1985), 87.
19. A. D. KENNEDY, J. KUTI, S. MEYER, AND B. J. PENDLETON, Phys. Lett. B 155 (1985), 414.

